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Abstract
Many sports employ caloric restriction (CR) to reduce athletes’ body mass. During these phases, resistance training (RT) 
volume is often reduced to accommodate recovery demands. Since RT volume is a well-known anabolic stimulus, this 
review investigates whether a higher training volume helps to spare lean mass during CR. A total of 15 studies met inclusion 
criteria. The extracted data allowed calculation of total tonnage lifted (repetitions × sets × intensity load) or weekly sets per 
muscle group for only 4 of the 15 studies, with RT volume being highly dependent on the examined muscle group as well 
as weekly training frequency per muscle group. Studies involving high RT volume programs (≥ 10 weekly sets per muscle 
group) revealed low-to-no (mostly female) lean mass loss. Additionally, studies increasing RT volume during CR over time 
appeared to demonstrate no-to-low lean mass loss when compared to studies reducing RT volume. Since data regarding 
RT variables applied were incomplete in most of the included studies, evidence is insufficient to conclude that a higher RT 
volume is better suited to spare lean mass during CR, although data seem to favor higher volumes in female athletes during 
CR. Moreover, the data appear to suggest that increasing RT volume during CR over time might be more effective in ame-
liorating CR-induced atrophy in both male and female resistance-trained athletes when compared to studies reducing RT 
volume. The effects of CR on lean mass sparing seem to be mediated by training experience, pre-diet volume, and energy 
deficit, with, on average, women tending to spare more lean mass than men. Potential explanatory mechanisms for enhanced 
lean mass sparing include a preserved endocrine milieu as well as heightened anabolic signaling.
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Introduction

Temporary phases of caloric restriction (CR) are typically 
used to reduce body mass (Gardner et al. 2018; Schwartz 
et al. 2017). Although, in most cases, the goal of these 
interventions is to reduce fat mass, lean tissue loss is often 
concomitantly observed as a negative side effect during pro-
longed CR (Ryan and Nicklas 2004; Bouchard et al. 2009; 

Karila et al. 2008). Weinheimer et al. (2010) concluded that, 
on average, 24% (dietary-only) and 11% (diet × exercise) of 
CR-induced weight loss are attributed to a reduction of lean 
tissue. Unfortunately, lean mass loss brings about additional 
negative consequences such as a decreased resting metabolic 
rate (Stiegler and Cunliffe 2006), which in turn increases the 
likelihood for the regain of body mass, mainly in the form 
of increased body fat (Maclean et al. 2011). It is therefore 
important to devise strategies that spare lean mass during 
prolonged CR interventions, which may also be of benefit 
to athletes who compete in sports involving body aesthetics 
or weight categories (e.g., bodybuilders, wrestlers, boxers, 
etc.). This objective, commonly referred to as high-qual-
ity weight loss, aims to reduce body fat while maintaining 
as much lean tissue as possible (Churchward-Venne et al. 
2013).

Lean mass sparing is determined by the dynamic bal-
ance between muscle protein synthesis (MPS) and prote-
olysis (Biolo et al. 1995; Phillips et al. 1997). In this regard, 
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CR leads to reduced responses to anabolic and anti-cata-
bolic stimuli when compared to eucaloric conditions (e.g., 
leucine-induced effects on cell signaling and MPS; Gwin 
et al. 2020a; Pasiakos et al. 2010, 2014), potentially affects 
activation of proteolytic pathways via reduced insulin levels 
(Greenhaff et al. 2008; Tipton et al. 2018), and culminates 
in an increased likelihood of lean mass loss. Moreover, the 
rate of MPS declines as an adaptive mechanism to conserve 
energy, which conceivably serves as a primary reason for 
lean tissue loss during hypocaloric conditions (Carbone 
et al. 2012; Margolis et al. 2016; Miller et al. 2012). Optimal 
approaches for lean mass sparing during CR should there-
fore focus on counteracting the decline in MPS by modify-
ing dietary and mechanical [i.e., resistance training (RT)] 
stimuli (Weinheimer et al. 2010; Cava et al. 2017; Carbone 
et al. 2019).

It is well known that a high-protein diet contributes 
to an elevation of mixed MPS (Pasiakos et al. 2013) and 
whole-body protein synthesis (Gwin et al. 2020a) as well 
as helping to inhibit insulin-sensitive protein breakdown 
(insulin-IGF-1-PI3K), which therefore partially counter-
acts the negative consequences of prolonged CR (Jäger et al. 
2017; Hudson et al. 2020; Gwin et al. 2020b). In addition, 
mechanical loading, such as in RT, interacts synergistically 
with a high-protein diet to further elevate MPS (Phillips 
et al. 1997; Churchward-Venne et al. 2012). Even during 
CR, this combination has been shown to preserve lean mass 
in obese individuals (Rice et al. 1999; Longland et al. 2016) 
and elite-level athletes (Garthe et al. 2011). However, these 
findings cannot be extrapolated to resistance-trained indi-
viduals due to divergent intracellular (Moberg et al. 2020) 
and MPS responses (Tang et al. 2008; Damas et al. 2015), 
as well as blood metabolome differences (Schranner et al. 
2021) between populations. To this point, a lean tissue loss 
of ~ 43% of the lost body mass was reported for a resistance-
trained athlete undergoing CR, despite implementation of a 
high-protein diet and regimented RT (Kistler et al. 2014).

It is currently unknown if and how RT variables need 
to be adjusted to spare lean mass in resistance-trained 
athletes. Although different RT variables elicit differ-
ent intracellular signaling responses and, thus, morpho-
logical adaptations (Toigo and Boutellier 2006), RT vol-
ume, in total tonnage [number of repetitions × number of 
sets × intensity load; kg] or simply counted as sets per 
muscle group per week (Baz-Valle et al. 2018; Israetel 
et al. 2019), might play an important role in muscular 
adaptations (Figueiredo et al. 2018): While several authors 
suggest an inverted U-shaped relationship between weekly 
volume and hypertrophy during eu- and hypercaloric 
conditions (Schoenfeld et al. 2019, 2017b) with higher 
RT volumes (up to a certain threshold) being necessary 
for advanced athletes to maximize hypertrophy (ACSM 
2009; Krzysztofik et al. 2019), preliminary data suggest 

a potential positive effect of higher volume RT on lean 
mass sparing during periods of CR (Dudgeon et al. 2017; 
Mitchell et al. 2018). Contrarily, some investigators report 
reduced RT volume during phases of high-energy demands 
to accommodate recovery ability (Chaouachi et al. 2009; 
Meckel et al. 2008; Vargas-Molina et al. 2020; Campbell 
et al. 2020). Since RT volume is a well-known anabolic 
stimulus for muscle hypertrophy (Schoenfeld et al. 2017b), 
this review investigates whether higher training volumes 
are more appropriate for sparing lean mass during CR.

Methods

Inclusion criteria

The review focused on studies published in English and 
German language peer-reviewed journals. To meet inclu-
sion criteria, the study had to: (1) include lean, healthy, 
drug-free resistance-trained individuals, (2) last at least 
4 weeks, (3) investigate hypocaloric conditions (≥ 200 kcal 
deficit/day), (4) report pre-post data for changes in lean 
mass, (5) employ a high-protein diet ≥ 2.0  g/kg fat-
free mass (FFM), and (6) present information about RT 
variables used.

Search strategy

A systematic literature search was performed using the Pub-
Med, MEDLINE, and SPORTDiscus databases between 
1990 and December 2020 according to the Preferred 
Reporting Items for Systematic Reviews and Meta-Anal-
yses (PRISMA) guidelines (Moher et al. 2009). Searches 
were performed using the following keywords: ‘resistance-
trained’, ‘bodybuilder’, ‘bodybuilding’, ‘recreationally 
active’, ‘contest preparation’, ‘competition’, ‘exercise’, 
‘strength training’, ‘lean mass’, ‘retention’, ‘volume’, ‘ath-
lete’, ‘weight loss’, ‘energy restriction’, ‘energy deficit’, 
‘caloric restriction’, ‘body composition’, ‘hypocaloric diet’, 
‘ketogenic’, ‘time-restricted feeding’, as well as combi-
nations of these. In addition, author names and reference 
lists were used for further search (Greenhalgh and Peacock 
2005).

Our analysis includes initial and final body fat mass lev-
els, protein consumption, study duration, estimated caloric 
deficit, RT protocol with special emphasis on RT volume 
used (total tonnage, sets/muscle group per week or sets/exer-
cise), absolute and relative lean mass loss, and assessment 
technique. These factors were selected given their proposed 
role in lean tissue sparing during CR (Heymsfield et al. 
2011).
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Coding of studies and methodological quality

The potentially relevant studies were perused and coded 
for the following criteria as per Schoenfeld et al. (2017a): 
(1) authors, title, and year of publication; (2) participant 
information, such as sample size, sex, age, and training 
experience. When possible, participants were categorized 
regarding the bodybuilding class in which they competed; 
in absence of this information, participants were classified 
based on RT experience (years of training); (3) description 
of the training intervention, including repetition ranges, 
weekly training frequency, exercises and RT volume used, 
with multi-joint exercises coded for the muscle group that 
is predominantly trained. RT volume was preferentially 
expressed in total tonnage (number of repetitions × num-
ber of sets × intensity load; kg) or, when not applicable, 
in weekly sets/muscle group. In the event that informa-
tion regarding RT variables was missing, we quantified RT 
volume as sets/exercise. As suggested by Schoenfeld et al. 
(2017b), total sets per muscle group per week were catego-
rized as follows: low (< 5), medium (5–9), or high (10 +); 
(4) methods of measurement were categorized as direct 
(magnetic resonance imaging, computerized tomography, 
and ultrasound) and indirect {underwater weighing (UWW), 
dual-energy X-ray absorptiometry (DXA), air displacement 
plethysmography (ADP), and bioelectrical impedance analy-
sis (BIA)}. When direct measures were employed, we noted 
the specific muscle group assessed.

PEDro scale

The PEDro scale (Maher et al. 2003) was selected to assess 
the methodological quality of the studies (Table 1). Consist-
ent with previous exercise-related reviews (Schoenfeld and 

Grgic 2020), the first item of the scale (referring to external 
validity) was not taken into account for the final score as 
recommended in the guidelines. Furthermore, items 5, 6, 
and 7 were excluded as well due to the difficulty of blind-
ing in exercise-related interventions. Thus, the maximum 
result was seven, categorized as follows (Schoenfeld and 
Grgic 2020): 6–7 = “excellent quality”; 5 = “good quality”; 
4 = “moderate quality”; 0–3 = “‘poor quality”, in line with 
other reviews (Kümmel et al. 2016).

Results

A total of 2791 studies were identified based on the search 
criteria. With respect to the studies’ abstracts, 51 of the 
reviewed studies were chosen to be potentially relevant 
for data analysis. The full texts of these articles were then 
screened; 36 of these studies (Greene et al. 2018; Helms 
et al. 2015b; Mero et al. 2010; Newton et al. 1993; Sawyer 
et al. 2013; Tinsley et al. 2017; Trabelsi et al. 2013, 2012; 
Vargas et al. 2018; Walberg-Rankin et al. 1993; Waldman 
et al. 2018; Kleiner et al. 1990; Bamman et al. 1993; Hick-
son et al. 1990; Withers et al. 1997; Wilson et al. 2017; 
Chatterton et al. 2017; Durguerian et al. 2016; Murphy and 
Koehler 2020; Gentil et al. 2017; Steen 1991; Manore et al. 
1993; Too et al. 1998; Moro et al. 2016; Areta et al. 2014; 
Kysel et al. 2020; Philpott et al. 2019; Huovinen et al. 2015; 
Antonio et al. 2019; Bazyler et al. 2018; Mäestu et al. 2008, 
2010; Dudgeon et al. 2016; Mettler et al. 2010; Rossow et al. 
2013; Syed-Abdul et al. 2019) were excluded from analysis 
for various reasons. Thus, 15 studies were used for qualita-
tive analysis. Figure 1 shows a flowchart of the literature 
search strategy; Table 2 summarizes the studies included 
for analysis. 

Table 1   PEDro scale (Maher 
et al. 2003)

Study 1 2 3 4 8 9 10 11

van der Ploeg et al. (2001) ✓ ✓ ✓ ✓
Halliday et al. (2016) Case study
Hulmi et al. (2016) ✓ ✓ ✓ ✓
Petrizzo et al. (2017) Case study
Rohrig et al. (2017) Case study
Tinsley et al. (2018) Case study
Vargas-Molina et al. (2020) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Mitchell et al. (2018) ✓ ✓
Pardue et al. (2017) Case study
Kistler et al. (2014) Case study
Robinson et al. (2015) Case study
Dudgeon et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓ ✓
Schoenfeld et al. (2020) Case study
Stratton et al. (2020) ✓ ✓ ✓ ✓ ✓ ✓
Campbell et al. (2020) ✓ ✓ ✓ ✓ ✓ ✓
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Sex distribution, study design, and intervention 
period

Seven studies recruited female participants. Of these 7 stud-
ies, 3 employed a longitudinal design (van der Ploeg et al. 
2001; Hulmi et al. 2016; Vargas-Molina et al. 2020), while 
the remaining 4 were case studies (Halliday et al. 2016; 
Petrizzo et al. 2017; Rohrig et al. 2017; Tinsley et al. 2018). 
Seven studies recruited male participants. Out of these 7 
studies, 3 studies employed a longitudinal design (Dudgeon 
et al. 2017; Stratton et al. 2020), with one study providing 
no control group (Mitchell et al. 2018): the other 4 studies 
were case studies (Pardue et al. 2017; Kistler et al. 2014; 
Robinson et al. 2015; Schoenfeld et al. 2020). One study 
(Campbell et al. 2020) used mixed-sex groups. The aver-
age study duration was 18.19 weeks (Mdn = 18 weeks) and 
ranged between 4 weeks (Stratton et al. 2020) and 8 months 
(Schoenfeld et al. 2020; Pardue et al. 2017).

Participants’ characteristics

The studies finally encompassed a total of 129 participants, 
consisting of 60 female and 69 male participants. Across the 
studies, 48 participants withdrew, with 5 studies reporting 
the reasons for withdrawal (Campbell et al. 2020; Mitchell 
et al. 2018; Stratton et al. 2020; Hulmi et al. 2016; Var-
gas-Molina et al. 2020). A majority of studies employed 

resistance-trained athletes except for Stratton et al. (2020), 
who characterized participants as recreationally trained. On 
average, mean training experience equated to 6.02 years 
(Mdn = 5.5 years) and ranged between “at least 6 months” 
(Stratton et al. 2020) to 10 years (Schoenfeld et al. 2020; 
Kistler et al. 2014). Mean age was 25.9 years ranging from 
21 (Pardue et al. 2017; Robinson et al. 2015) to 35.3 years 
(van der Ploeg et al. 2001). Initial body fat averaged 21.7% 
[ranging from 14.6% (Hulmi et al. 2016) to 30.5% (Roh-
rig et al. 2017)] and 14.9% [ranging from 9.5% (Schoen-
feld et al. 2020) to 19.9% (Stratton et al. 2020)] in females 
and males, respectively; ∆ body fat loss averaged  – 7.9% in 
females and  – 5.2% in males in total.

Estimated caloric deficit, diet differences, 
and protein consumption

Based on the amount of weight lost, the estimated energy 
deficit per day ranged between  – 250 kcal (Halliday et al. 
2016) and  – 882 kcal per day (Robinson et al. 2015) with a 
mean deficit of  – 347 kcal and  – 398 kcal per day in females 
and males, respectively. Most of the studies reported a grad-
ual decrease in energy intake during the trials. One study 
(Campbell et al. 2020) employed an intermittent dieting pro-
tocol [5 days dieting ( – 35% reduction from maintenance 
caloric needs) followed by a 2-day diet break (consumption 
at maintenance caloric needs) and included a continuous 
dieting group as controls ( – 25%)]. While most of the studies 
were carried out using a low-fat diet, 3 studies employed a 
carbohydrate-cycling protocol (Halliday et al. 2016; Kistler 
et al. 2014; Pardue et al. 2017) and 1 study used a ketogenic 
diet protocol (Vargas-Molina et al. 2020). Mean protein con-
sumption was 3.35 g/kg FFM in females and 3.06 g/kg FFM 
in males, and ranged between 2.12 g/kg FFM (Campbell 
et al. 2020) and 4.00 g/kg FFM (Petrizzo et al. 2017).

Exercise protocols, volume quantification, lean mass 
change, and assessment techniques

Eleven out of 15 studies used concurrent aerobic training 
(high-intensity interval, moderate-intensity, or low-intensity 
steady-state training), which was typically (van der Ploeg 
et al. 2001; Petrizzo et al. 2017; Rohrig et al. 2017; Tinsley 
et al. 2018; Kistler et al. 2014; Robinson et al. 2015; Hulmi 
et al. 2016; Pardue et al. 2017), but not always (Campbell 
et al. 2020; Halliday et al. 2016; Schoenfeld et al. 2020), 
increased to support gradual weight loss. RT per week varied 
between 2 and 7 days. Most studies employed 2 RT sessions 
per muscle group; however, this ranged between 1 (Dudg-
eon et al. 2017) and 7 (Schoenfeld et al. 2020) days per 
week. Repetitions ranged from 3 to 30 across trials with 3 
studies employing RT to concentric failure (Petrizzo et al. 
2017; Tinsley et al. 2018; Vargas-Molina et al. 2020) and 

Records identified 
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dedulcnI
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Additional records 
identified through 

other sources
(n = 5)
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Fig. 1   PRISMA flowchart
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3 studies reporting daily undulating periodized loading 
schemes (Kistler et al. 2014; Stratton et al. 2020; Rohrig 
et al. 2017). Interset rest intervals ranged between 45 s and 
3 min, but were only reported in 4 studies (Tinsley et al. 
2018; Vargas-Molina et al. 2020; Dudgeon et al. 2017; Strat-
ton et al. 2020).

Only one of the included studies (Mitchell et al. 2018) 
provided volume quantification in total tonnage lifted (rep-
etitions × sets × intensity load). Weekly sets per muscle 
group were reported in 3 studies (Petrizzo et al. 2017; Tin-
sley et al. 2018; Pardue et al. 2017). Volume configurations 
were highly dependent on the examined muscle group, as 
well as on the number of weekly training sessions for the 
same muscle group. Overall, volume ranged from 10 sets 
per muscle group per week (e.g., arms; Petrizzo et al. 2017; 
Tinsley et al. 2018) to > 20 (Pardue et al. 2017) and > 30 
sets/muscle group per week (mostly legs; Petrizzo et al. 
2017). In the remaining studies, volume was either depicted 
as sets/exercise (van der Ploeg et al. 2001; Vargas-Molina 
et al. 2020; Robinson et al. 2015; Dudgeon et al. 2017; 
Schoenfeld et al. 2020; Stratton et al. 2020; Campbell et al. 
2020), ranging between 1 and 10 sets/exercise, or could not 
be calculated adequately (Halliday et al. 2016; Hulmi et al. 
2016; Rohrig et al. 2017; Kistler et al. 2014). Notably, 1 
study (Halliday et al. 2016) referenced their RT protocol as 
high-volume without providing any information about RT 
volume. Finally, 3 of the 15 studies were carried out under 
direct supervision (Campbell et al. 2020; Dudgeon et al. 
2017; Stratton et al. 2020).

Five studies increased RT volume over time either via 
sets/exercise or by increasing the weight lifted (Petrizzo 
et al. 2017; Vargas-Molina et al. 2020; Dudgeon et al. 2017; 
Stratton et al. 2020; Campbell et al. 2020), with 1 study 
mentioning RT changes in METh/week (Hulmi et al. 2016). 
Three studies reduced RT volume (van der Ploeg et al. 2001; 
Vargas-Molina et al. 2020; Campbell et al. 2020), whereas 
1 study reported an increase followed by a decrease in total 
tonnage lifted during the course of bodybuilding contest 
preparation (Mitchell et al. 2018).

In general, average body mass loss was  – 4.8  kg 
and  – 5.0 kg in females and males, respectively. Lean mass 
changes varied between + 1.3 kg and  – 6.6 kg, with a relative 
lean tissue loss up to approximately 54% of the total loss in 
body mass (Schoenfeld et al. 2020). When divided by sex, 2 
of 7 studies in females and 5 of 7 studies in males reported 
lean tissue loss during dieting, suggesting a significant influ-
ence of sex on lean tissue change during CR. On average, 
females gained 0.2 kg lean tissue during dieting with 1 study 
(Hulmi et al. 2016) reporting contradictory results between 
DXA and multifrequency BIA. Except for 2 studies (van 
der Ploeg et al. 2001; Vargas-Molina et al. 2020), the stud-
ies using female participants reported muscle mass main-
tenance (Halliday et al. 2016) or even an increase in lean 

tissue (+ 1.03 kg on average) (Petrizzo et al. 2017; Rohrig 
et al. 2017; Tinsley et al. 2018). Except for Rohrig et al. 
(2017), who reported moderate volume workouts, the lat-
ter mentioned studies labeled themselves as high-volume or 
increased RT volume over time (CR ranging from -270 kcal/
day to  – 320 kcal/day) and can be categorized as high-vol-
ume according to our a priori classification criteria. Contra-
rily, studies reporting decreased RT volume (Vargas-Molina 
et al. 2020; van der Ploeg et al. 2001) observed lean tissue 
losses ( – 1.04 kg on average; CR ranging from  – 280 kcal/
day to  – 500 kcal/day). The time course of absolute lean tis-
sue changes for men and women is presented in Fig. 2.

On average, the lean tissue loss was  – 2.81 kg in males 
(Mdn =  – 0.9 kg) with a relative mean loss of 28.7% of the 
loss in total body mass (Mdn = 39.1%). While absolute lean 
mass loss ranged from −0.5 kg to −6.6 kg, relative losses 
ranged between 12% and 54% of the weight lost, with 1 
study (Pardue et al. 2017) reporting contradictory results 
between DXA and ADP. Except for 1 study that reported no 
lean tissue loss in the + WHEY intervention group (Dudgeon 
et al. 2017) and another study reporting increases in cross-
sectional area (CSA) (Stratton et al. 2020), the remaining 5 
studies observed lean tissue losses (Robinson et al. 2015; 
Schoenfeld et al. 2020; Kistler et al. 2014; Pardue et al. 
2017; Mitchell et al. 2018). When evaluating the relationship 
between lean tissue changes and RT volume, studies that 
reported no loss (Dudgeon et al. 2017; Stratton et al. 2020) 
or even an increase in lean mass after 8 weeks of CR (Mitch-
ell et al. 2018), all increased RT volume over time (CR rang-
ing from  – 260 kcal/day to  – 350 kcal/day). Contrarily, when 
RT volume was reduced, a loss of lean mass was reported 
(Mitchell et al. 2018). Overall, most of the studies assessed 
body composition via DXA (Kistler et al. 2014; Halliday 
et al. 2016; Hulmi et al. 2016; Petrizzo et al. 2017; Vargas-
Molina et al. 2020; Mitchell et al. 2018; Pardue et al. 2017), 
followed by multifrequency BIA (Hulmi et al. 2016; Schoe-
nfeld et al. 2020; Campbell et al. 2020), skinfold measures 
(Hulmi et al. 2016; Robinson et al. 2015; Schoenfeld et al. 
2020), 4C models (van der Ploeg et al. 2001; Tinsley et al. 
2018), UWW (Rohrig et al. 2017; Dudgeon et al. 2017), and 
ADP (Pardue et al. 2017). Three studies used ultrasound as 
a direct measure (Hulmi et al. 2016; Schoenfeld et al. 2020; 
Stratton et al. 2020).

Discussion

The purpose of this review was to assess whether higher RT 
volumes help to spare lean mass during CR. Volume con-
figurations were highly dependent on the examined muscle 
group as well as on the number of weekly training sessions 
for the same muscle group. According to the volume classi-
fication used in this review, 3 studies could be categorized as 
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high-volume, ranging from 10 to > 30 weekly sets per mus-
cle group, which revealed low-to-no (mostly female) lean 
mass loss. Volume quantification in total tonnage was only 
provided by 1 study (Mitchell et al. 2018), with the authors 
reporting an increase in lean mass after increasing the total 
tonnage lifted (repetitions × sets × intensity load). Unfortu-
nately, the provided data allowed calculation of total ton-
nage lifted or weekly sets per muscle group for only 4 of the 
15 studies. Therefore, due to incomplete data regarding RT 
variables applied, there is insufficient evidence to conclude 
that a higher RT volume is advantageous for sparing lean 
mass during CR, although the data do seem to favor high-
volume RT in female athletes under these circumstances. 
Longitudinal studies using male participants under CR are 
less conclusive, with 1 study reporting high lean mass loss 
despite being referenced as high-volume by the authors 
(Schoenfeld et al. 2020). Moreover, the data appear to sug-
gest that progressively increasing RT volume over time dur-
ing CR may be more effective in ameliorating CR-induced 
atrophy in both female and male resistance-trained athletes 
as opposed to reducing RT volume. Our conclusion appears 
to be supported by endocrine (Schoenfeld et al. 2020; Strat-
ton et al. 2020; Rossetti et al. 2017) and intracellular findings 
(Areta et al. 2014; Pasiakos et al. 2013; Hornberger 2011), 

underpinning potential explanations for increased lean mass 
sparing. Our findings also indicate that, on average, women 
tend to spare more lean mass than men during CR.

Female resistance‑trained athletes

Seven CR studies with female participants met our inclusion 
criteria (Halliday et al. 2016; Hulmi et al. 2016; Petrizzo 
et al. 2017; Rohrig et al. 2017; Tinsley et al. 2018; van 
der Ploeg et al. 2001; Vargas-Molina et al. 2020). Except 
for three studies (van der Ploeg et al. 2001; Hulmi et al. 
2016; Vargas-Molina et al. 2020), the remaining studies 
reported muscle mass maintenance (Halliday et al. 2016) or 
an increase in lean mass (Petrizzo et al. 2017; Rohrig et al. 
2017; Tinsley et al. 2018). When evaluating the relation-
ship between lean tissue changes and RT volume, the latter 
mentioned studies either self-reported their volume as mod-
erate without providing set numbers (Rohrig et al. 2017), 
increased RT volume over time (Petrizzo et al. 2017), or met 
our established criteria as a high-volume protocol (Petrizzo 
et al. 2017; Tinsley et al. 2018). Conversely, studies report-
ing decreased RT volume (van der Ploeg et al. 2001; Vargas-
Molina et al. 2020) tended to observe lean tissue loss.

Fig. 2   Time course of lean tissue changes during CR in kilograms. 
Longitudinal depiction of (a) female and (c) male athletes as well as 
absolute visualization of (b) female and (d) male athletes. (+) indi-
cates (self-reported) high-volume RT; (++) indicates progressive 

overload over time, (-) indicates reduced volume; without symbols 
means that volume tendency could not be specified; Stratton et  al. 
2020 was not included due to missing whole-body lean mass data. 
CON control group, IV intervention group
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For instance, van der Ploeg et al. (2001) reported that 
participants lost -1.38 kg lean mass on average (23.8% of the 
lost mass). Although the study did not report protein intake, 
volume (in terms of load or repetitions) was reduced by 4/5 
participants during the study. Since the remaining studies 
did not report any changes in the RT protocol (Halliday et al. 
2016; Rohrig et al. 2017), increased volume (Petrizzo et al. 
2017), or steadily changed RT programing to induce novel 
stimuli (Tinsley et al. 2018), it is plausible that the reduced 
volume contributed to the lean mass loss. This is in accord-
ance with other research reporting a similar lean mass loss 
and decreased volume in 2 of 8 weeks (Vargas-Molina et al. 
2020).

Except for one study (Halliday et al. 2016) that reported 
lean mass maintenance, the remaining studies (Petrizzo 
et al. 2017; Rohrig et al. 2017; Tinsley et al. 2018) found 
that female athletes gained lean mass during CR. Unfor-
tunately, Rohrig et al. (2017) only reported information 
on two moderate-volume and two high-intensity workouts 
without providing further details (lean mass gain + 1.3 kg), 
thus precluding in depth analysis. Other studies provided 
more detailed information about exercise and nutritional 
variables (Petrizzo et al. 2017; Tinsley et al. 2018): For 
instance, Petrizzo et al. (2017) stated that their participant 
ingested ~ 4.00 g/kg FFM protein/day on average and com-
pleted high-volume RT during the course of the study (lean 
mass gain + 0.7 kg). Contest preparation started with RT 
performed 4–5 × per week and progressively increased to 
6x/week, while RT volume per session remained the same. 
In every workout, the athlete trained with 2–6 exercises per 
muscle group with 3 sets to momentary muscle failure per 
exercise. Although it is unclear whether RT volume was 
increased over time in the study by Tinsley et al. (2018), the 
high-volume RT protocol (4–6 times/week on average with 
10–20 sets per muscle group) led to a significant increase 
in lean mass (+ 1.1 kg). It is noteworthy that the majority of 
studies employed protein intakes at the upper limits of what 
is recommended for weight loss phases (Roberts et al. 2020; 
Helms et al. 2014). Since a high-protein intake appears to 
attenuate stress and fatigue compared to a moderate-protein 
intake during CR (Helms et al. 2015b), it is plausible that the 
markedly high-protein intake seen in this review might have 
allowed a non-perturbed RT performance, potentially help-
ing to indirectly spare lean mass. More research is warranted 
to elucidate the interaction between protein intake and RT 
performance (e.g., referring to volume tolerance, strength 
change, stress, and fatigue accumulation) during CR.

Although preliminary evidence seems to suggest that 
high-volume RT leads to an increase in lean mass during CR 
in resistance-trained female athletes (Petrizzo et al. 2017; 
Tinsley et al. 2018), incomplete data hamper the strength of 
relationship between variables. However, since studies that 
cut back RT volume reported atrophic effects, increasing 

volume over time during CR appears to be a promising 
approach to achieve high-quality weight loss in female ath-
letes. This is in line with the proposed inverted U-shaped 
relationship of hypertrophy during eucaloric conditions, 
with RT volume appearing to elicit anabolism in a dose-
dependent fashion (Schoenfeld et al. 2017b; Figueiredo et al. 
2018), and leads us to speculate that similar anabolic effects 
may occur during CR as well in a young, female population 
(Petrizzo et al. 2017; Tinsley et al. 2018). This hypothesis 
should be tested in well-controlled studies to better infer cau-
sality. Moreover, future research should provide a detailed 
description of how RT variables were applied, given the 
incomplete data regarding RT variables seen in this review. 
In this context, we recommend providing workout details 
with the variables identified by Toigo and Boutellier (2006) 
that have all been shown to affect the adaptation response 
following repeated bouts of RT.

Male resistance‑trained athletes

Seven studies using male participants (Mitchell et al. 2018; 
Pardue et al. 2017; Kistler et al. 2014; Dudgeon et al. 2017; 
Stratton et al. 2020; Schoenfeld et al. 2020; Robinson et al. 
2015) and 1 study using mixed-sex groups (Campbell et al. 
2020) met inclusion criteria of our review. Except for 2 stud-
ies (Dudgeon et al. 2017; Stratton et al. 2020), the remaining 
6 studies reported a wide range of lean tissue losses. When 
evaluating the relationship between lean tissue changes and 
RT volume in this population, studies reporting low (Dudg-
eon et al. 2017) [+ CARB group] to no loss (Dudgeon et al. 
2017) [+ WHEY group] or even an increase (Stratton et al. 
2020) in CSA, involved an increased RT volume over time. 
These findings are supported by a study that increased vol-
ume during the first few weeks of the CR and then reduced 
RT volume during the final weeks (Mitchell et al. 2018).

Dudgeon et al. (2017) recruited RT athletes with at least 
2 years of RT experience and compared lean mass changes 
when consuming higher versus lower protein diets during 
CR. The supervised RT protocol included 3–4 sets/exercise 
with steady RT volume increases throughout the course 
of the study. The higher protein group fully retained ini-
tial lean mass with the control group slightly losing lean 
mass [−0.9 kg (39.1%)]. Moreover, the study by Stratton 
et al. (2020) involved recreationally active athletes with “at 
least 6 months” of RT experience. Participants performed 
a supervised RT protocol that progressively increased load 
over time. At study’s end, ultrasound measurements revealed 
a significant increase in m. vastus lateralis and m. biceps 
brachii CSA. These findings suggest that increasing RT 
volume could possibly elicit lean tissue accretion in recrea-
tionally trained athletes under conditions of CR. The results 
are in accordance with other studies (Garthe et al. 2011; 
Longland et al. 2016; Barakat et al. 2020), suggestive of 
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a mediating effect of RT experience on lean mass sparing 
during CR. Consequently, findings using RT beginners or 
novice athletes cannot be extrapolated to populations who 
are chronically adapted to RT. Beginners or novice athletes 
are hypersensitized to RT-induced stimuli, which probably 
leads to a better preservation or, perhaps even an accretion 
of lean mass during hypocaloric conditions (Garthe et al. 
2011; Longland et al. 2016).

Current data suggest that increasing RT volume over time 
might have beneficial effects on sparing lean mass during 
CR in resistance-trained males, as well. This hypothesis is 
supported by longitudinal data showing an increase in lean 
mass (0.4 kg) during the first 8 weeks of contest preparation 
(~ -260 kcal/day) of resistance-trained men (Mitchell et al. 
2018). The athletes trained progressively (total tonnage per 
week) between week 16 (PRE16) and week 8 (PRE8) (vol-
ume increased from 82,500 kg to 94,300 kg). However, when 
the athletes reduced total volume (94,300 kg to 66,600 kg) 
from week 8 (PRE8) to week 1 (PRE1), a lean mass loss of 
-0.5 kg on average was observed. Similar results were found 
in the case study by Schoenfeld et al. (2020). Although vol-
ume cannot be calculated retrospectively, a high RT volume 
(range: 1–10 sets/exercise performed 6–7 days/week) was 
reported over the course of the study with no alterations in 
lean mass seen during the first 3 months of contest prepara-
tion as indicated by multifrequency BIA. This interpreta-
tion is supported by the complementary ultrasound meas-
urements (muscle thickness) revealing muscle maintenance 
until month 5 of the contest preparation. Afterward, muscle 
thickness measures showed a rapid and severe decline in the 
last months of preparation. Notably, lean tissue loss coin-
cided with a marked reduction in caloric intake and higher 
aerobic training volume, whereby the individual achieved 
extremely low levels of body fat (< 7%). It can be speculated 
that lean mass loss might heighten when body fat levels fall 
to a given minimal threshold, as demonstrated in some (Kis-
tler et al. 2014; Robinson et al. 2015) but not all (Mitchell 
et al. 2018) studies. Higher aerobic training may also inter-
fere with RT adaptations, especially in highly resistance-
trained individuals (Petré et al. 2021; Vechin et al. 2021).

The case studies by Robinson et al. (2015) and Kistler 
et al. (2014) reported large lean mass losses of approxi-
mately  – 5.0 kg (~ 43%, skinfolds) and  – 6.6 kg (~ 43%, 
DXA), respectively. The workout routines included 20–25 
sets/workout (Kistler et  al. 2014) and 4–5 sets/exercise 
performed twice per week (Robinson et al. 2015), with no 
information provided about total tonnage lifted, total sets 
per muscle group per week or any RT volume increases/
decreases over time. Notably, both athletes dieted in a com-
parably higher deficit with Robinson et al. (2015) equating 
to  – 882 kcal/day and Kistler et al. (2014) to ~  – 580 kcal/
day. Although the study by Robinson et al. (2015) could 
be categorized as high-volume based on our established 

qualifications, the extent of lean mass sparing is determined 
by the interplay of multiple variables (Heymsfield et al. 
2011). We propose two possible explanations for the higher 
observed losses in lean mass in these case studies. First, 
given the assumption that higher deficits lead to greater lean 
mass loss (Chaston et al. 2007), we speculate that once the 
deficit becomes too severe, even anabolic stimuli such as 
high-volume RT may be unable to counteract diet-induced 
anabolic resistance (Schoenfeld et al. 2020; Kistler et al. 
2014; Robinson et al. 2015; Murphy and Koehler 2020). The 
total body mass loss exhibited in the examined studies did 
not necessarily translate into lean mass loss, underscoring 
total energy deficit as an essential factor in determining lean 
mass change (Murphy and Koehler 2021). Second, accord-
ing to the inverted U-shaped relationship of hypertrophy 
proposed by Schoenfeld et al. (2017b), the individual RT 
volume could be possibly either not high enough or, alter-
natively, too high, as RT volume must always be considered 
in a relative (e.g., compared to the off-season) manner (Scar-
pelli et al. 2020). If volume is decreased from the off-season 
to the weight loss phase, as has been previously reported in 
bodybuilders (Hackett et al. 2013), this conceivably reduces 
mechanical loading, which in turn may hasten the decrease 
in lean mass (Hornberger 2011; Vandenburgh et al. 1999; 
Gao et al. 2018; Breen et al. 2013).

Since important information regarding RT variables 
often was not reported, calculating total tonnage or sets per 
muscle group per week was only possible in one study and, 
hence, precluded us from drawing relevant conclusions in 
this regard. However, based on the inverted U-shaped rela-
tionship between RT volume and muscle hypertrophy, the 
data appear to suggest that progressively  increasing RT 
volume during CR, either by increasing sets per exercise 
or the load lifted, might be more effective in ameliorating 
CR-induced atrophy in male resistance-trained athletes than 
reducing RT volume. When compared to female athletes, 
increasing RT volume appears to partially counteract, but 
does not completely reverse diet-induced perturbations in 
lean tissue in male athletes. Consequently, studies employ-
ing mixed-sex designs (Campbell et al. 2020) could not be 
taken into account due to reporting only summarized results. 
Although males and females show a similar RT-induced 
mTOR activation (Dreyer et al. 2010; Smith et al. 2009), 
they differ in body composition, muscle phenotype, hor-
monal actions, and mitochondrial activity (Rosa-Caldwell 
and Greene 2019; Stapley 2001; Williams et al. 2015), and 
typically retain more lean mass than their male counter-
parts during phases of CR. Given that sex differences have 
already been reported for muscle strength and muscle size 
in an elderly population (Jones et al. 2021), our findings 
highlight sex as a significant influencing variable that affects 
lean tissue change during CR. Thus, we recommend future 
studies that investigate body composition changes during CR 
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to report sex-differentiated results rather than summarizing 
results. Although research remains somewhat inconclusive 
on the topic, it might be speculated that a higher estrogen 
concentration might contribute to lean mass sparing (Car-
son and Manolagas 2015; Enns and Tiidus 2010), perhaps 
due to its anabolic effect on insulin-like growth factor (IGF-
1) (Olivieri et al. 2014). This hypothesis warrants further 
investigation.

Possible explanatory mechanisms

Endocrine factors

Hormones take part in a complex signaling system and are 
affected by exogenous stimuli such as CR, energy availabil-
ity (Loucks and Thuma 2003; Mountjoy et al. 2018), and 
physical activity (de Alcantara Borba et al. 2020; Kraemer 
and Ratamess 2005). For instance, CR induces endocrine 
changes that may negatively affect protein balance and ulti-
mately contributes to lean mass loss. In this case, the body 
conceivably conserves energy for more important physi-
ological processes (Trexler et al. 2014). Since IGF-1 data 
were not reported in the studies included in this review, we 
solely focused on testosterone changes during CR.

Testosterone is considered a key anabolic hormone that 
possesses a variety of ergogenic, anabolic, and anti-catabolic 
properties (Kraemer et al. 2020). Several authors reported 
lean mass loss after a chronic drop in testosterone in the 
absence of RT during CR (Friedl et al. 2000; Karila et al. 
2008); alternatively, lean mass sparing is reported with non-
significant testosterone changes (Huovinen et al. 2015), sug-
gesting a potential role of testosterone on the extent of lean 
mass sparing during CR. Dietary interventions, including a 
high-protein approach, are not able to attenuate the testos-
terone decline during CR (Henning et al. 2014); rather, the 
drop seems to be energy-dependent (Karila et al. 2008; Mero 
et al. 2010; Longland et al. 2016) and must be interpreted 
in the context of other anabolic hormones such as IGF-
1(Sculthorpe et al. 2012). In the context of RT, androgen 
receptor content correlates with an increase in lean mass and 
m. vastus lateralis type 1 and 2 CSA, respectively, during 
eucaloric conditions (Morton et al. 2018).

With respect to the studies compiled in this review, 6 
studies investigated testosterone change during energy defi-
cit with mixed results. In a case study involving self-reported 
“moderate-volume” RT (Rohrig et al. 2017), the female ath-
lete’s testosterone level did not drop during contest prepara-
tion. In this case, no lean mass loss was observed. Stratton 
et al. (2020) reported that testosterone concentration changed 
significantly by a non-consequential amount of  – 6.6 ng/
dL (time-restricted feeding) and  – 1.1 ng/dL (normal daily 
feeding), respectively, with their participants ultimately 
increasing CSA during CR; RT load was increased during 

the course of the study. Moreover, no statistical difference in 
testosterone change was seen in the first 8 weeks of contest 
preparation in the study by Mitchell et al. (2018), coincid-
ing with increased RT volume. Contrarily, other research 
reported that testosterone levels dropped in females (Hulmi 
et al. 2016), with contradictory lean mass changes reported 
between DXA and MFBIA, and males (Schoenfeld et al. 
2020; Pardue et al. 2017). The CR-induced drop in testos-
terone levels might negatively affect MAPK/ERK1/2 (Dent 
et al. 2012; Hamdi and Mutungi 2010), mTOR and Akt 
signaling, as well as androgen receptor activation (Basualto-
Alarcón et al. 2013), and thus possibly have a detrimental 
effect on protein balance (Rossetti et al. 2017).

Although higher acute hormonal concentrations may 
enhance the anabolic milieu and hence help to spare lean 
mass (Pritchard et al. 1999; Kraemer et al. 2020), acute post-
exercise hormonal elevations are not necessarily reflected in 
the MPS response (West et al. 2009). Moreover, methodo-
logical difficulties such as measurement timing, circadian 
rhythm, blood volume changes, and hormonal interactions 
with binding proteins (Craig et al. 2008; Kraemer et al. 
2016) make inter-study comparisons challenging. While 
mediated by a plethora of variables such as energy deficit, 
energy availability, and sleep quality, the data compiled in 
this review may suggest a link between higher volume RT, 
testosterone-level preservation, and lean mass sparing during 
CR. Nevertheless, this hypothesis remains speculative and 
warrants further study.

Intracellular pathways

Lean mass changes are determined by the dynamic balance 
between MPS and protein breakdown (Biolo et al. 1995; 
Phillips et al. 1997). Termed as protein turnover, this ratio is 
affected by many variables such as energy and nutrient avail-
ability, growth-related hormones, sleep status, and mechani-
cal loading (Areta et al. 2014; Hoppeler 2016; Pasiakos and 
Carbone 2014). In the perspective of the latter, high-volume 
RT elicits reactions in metabolic, endocrine, nervous, and 
musculoskeletal systems (Kraemer and Ratamess 2004).

The mechanistic target of rapamycin (mTOR) functions 
as a molecular nodal point that modulates the magnitude and 
duration of MPS (Hoppeler 2016). During CR, activation 
of mTORC1 and its downstream targets, as well as MPS is 
reduced, while proteolysis appears to be increased (Margo-
lis et al. 2016; Carbone et al. 2014; Berryman et al. 2017); 
however, the results in this regard are somewhat conflicting 
(Carbone et al. 2019). Without any counteracting stimuli 
(e.g., RT), attenuation of MPS ultimately leads to a nega-
tive net protein balance and, hence, to lean tissue loss (Roth 
et al. 2021; Pasiakos et al. 2013). This is supported by the 
data of athletes taking performance-enhancing drugs who, 
due to ergogenic effects on protein turnover, do not show 
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significant lean tissue loss (Pasiakos et al. 2019; de Souza 
et al. 2018; Howard et al. 2020). Although RT is widely 
recognized as a potent countermeasure against CR-induced 
alterations, lean tissue loss is also often reported (Weinhe-
imer et al. 2010).

A change in the protein translation process is believed to 
be a possible reason for the reduced MPS response to either 
nutritional or mechanical stimuli during CR, conceivably as 
an adaptive response by the body to selectively synthesize 
new proteins depending on cell needs (e.g., surviving func-
tion; Margolis et al. 2016; Miller et al. 2012; Carbone et al. 
2012). While higher volume RT increases intracellular ana-
bolic signaling during eucaloric conditions (Burd et al. 2010; 
Terzis et al. 2010; Hulmi et al. 2012; Ahtiainen et al. 2015), 
similar findings have been reported for CR (Areta et al. 
2014). Although resting postabsorptive MPS was reported 
to be lower during CR (30 kcal/kg−1 FFM) when compared 
to energy balance (Areta et al. 2014), high-volume RT (6 
sets × 8 repetitions) elevated MPS to values observed at rest 
in energy balance, along with further increases after protein 
supplementation. The study included resistance-trained ath-
letes who undertook a short-term diet (5 days). mTORSer2448, 
AktSer473, p70S6KThr389, and rpS6Ser236/237 phosphorylation 
were restored above resting energy balance baseline levels 
and no differences were seen in AMPK, 4E-BP1, or eEF2 
phosphorylation. Contrarily, lower postabsorptive AktSer473 
phosphorylation as well as lower postprandial p70s6kSer424/

Thr421 phosphorylation (similar postprandial p70s6k levels 
at Thr389) were observed by Pasiakos et al. (2013), who 
investigated the effect of different protein intakes in physi-
cally active individuals undergoing CR. Herein, low-volume 
and low-intensity resistive type exercise was performed to 
maintain physical fitness. In contrast to Areta et al. (2014), 
lower phosphorylation levels of AktSer473 and p70s6kSer424/

Thr421 have been reported. Since CR was comparable in both 
studies and high-protein approaches were followed, differ-
ences in RT volume might be an explanation for the different 
signaling responses. In addition to RT volume, differences in 
intensity of effort (proximity to failure) should be considered 
a potential alternative theory given that proximity to fail-
ure might affect hypertrophy in resistance-trained athletes 
(Grgic et al. 2021).

Although evidence remains preliminary, it appears that 
multi-set protocols lead to a pronounced upregulation of 
intracellular anabolic signaling in resistance-trained ath-
letes when compared with low-volume resistive type exer-
cise during CR. However, although intracellular data appear 
to support the proposed benefits of higher RT volume on 
lean tissue sparing, further studies are warranted to test this 
hypothesis.

Conclusion and limitations

The findings of this review suggest that reducing RT volume 
during CR (van der Ploeg et al. 2001; Vargas-Molina et al. 
2020; Mitchell et al. 2018) may negatively affect lean tis-
sue sparing in resistance-trained individuals. Based on the 
included studies, there is insufficient evidence to conclude 
that a higher RT volume better spares lean mass during CR, 
although the available data seem to favor high-volume RT in 
female athletes under these circumstances. Studies examin-
ing resistance-trained males are less conclusive, with 1 study 
reporting substantial lean mass loss despite being referenced 
as high-volume; however, the data appear to suggest that 
systematically increasing volume during CR may enhance 
the anabolic milieu when compared to reducing RT volume. 
Hence, increasing resistance training volume might be a 
promising approach to maximize lean tissue sparing during 
CR (Fig. 3). Possible effects seem to be mediated by training 
experience, pre-diet volume, energy deficit, body fat, and 
concurrent aerobic training. Accordingly, advanced lifters or 
athletes adapted to high mechanical loading protocols (e.g., 
powerlifters) might require more volume compared to rec-
reationally trained athletes (Stratton et al. 2020), similar to 
what has been reported for muscle strength gains (Peterson 
et al. 2005).

When stratified by sex, our findings also indicate that 
women tend to retain more lean mass compared to males 
when using higher volume RT during CR. However, rand-
omized controlled trials on the topic are lacking (Fagerberg 
2018; Helms et al. 2015a). Furthermore, methodological 
differences (e.g., protein amount, RT experience, initial fat 
mass, or volume quantification), study quality, and the var-
ied assessment techniques (4C, DXA, BIA, ADP, UWW, 
skinfolds, and sonography) confound the ability to draw 
strong conclusions. Since data regarding manipulation of RT 
variables were incomplete in most of the included studies, 
findings need to be interpreted with caution. Based on the 
2791 papers screened, only 15 studies met inclusion criteria 
and, hence, were included in qualitative analysis. However, 
where applicable, relevant information from other studies 
was incorporated into the conclusions drawn herein.

Contrary to our conclusion, athletes are often instructed 
to reduce volume during phases of CR (Gentil 2015; Cha-
ouachi et al. 2009; Meckel et al. 2008). This practice is 
typically justified by the claim of higher recovery demands 
under conditions of low-energy availability and often ref-
erenced with the study of Bickel and colleagues (2011), 
who demonstrated that young, intermediate-experienced 
athletes can preserve lean mass during eucaloric condi-
tions when training with approximately one-third of their 
original volume. However, CR is associated with a sup-
pression of anabolic and anti-catabolic stimuli, as well as 
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a heightened catabolic milieu. From an intracellular sign-
aling perspective, findings of eucaloric and hypercaloric 
studies cannot be extrapolated to hypocaloric conditions 
due to skeletal muscle probably becoming less sensitive to 
nutritional and mechanical stimuli during CR (Murphy and 
Koehler 2020). Consequently, RT volume should not nec-
essarily be decreased during phases of prolonged CR.

It is important to note that our conclusions are based 
on correlational data, which precludes the ability to draw 
strong causal inferences. Future research should focus on 
conducting randomized controlled interventions that directly 
compare higher versus lower RT volume protocols during 
periods of CR to better understand the cause–effect relation-
ship between training volume and energy availability.
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